University Leadership Forum

Optimizing the Role of Higher Education in the Emerging Innovation Landscape

Elevate.
Elevate.

Optimizing the Role of Higher Education in the Emerging Innovation Landscape
Since the Council’s founding in 1986, U.S. college and university leaders have played a central role alongside their corporate, labor and national lab peers in developing and championing critical federal and state policies to drive regional and national economic development, leadership in basic and applied research, technology commercialization and skilled job creation. Council Founder John Young, the CEO of Hewlett Packard, recognized from the start the critical role universities and colleges play in driving and enhancing U.S. competitiveness and technological leadership as core to ensuring the nation's future prosperity and national security.

A look back over the Council’s history in this space must begin with the groundbreaking Clusters of Innovation work in the late 1990s, done in partnership with Professor Michael Porter of Harvard Business School, that explored regions anchored by higher education assets in cities like Atlanta, Wichita and San Diego. In 1999, we co-created the Innovation Index, which eventually led the Department of Commerce to support Professor Porter in developing the first-ever SIC/NAICS crosswalk, allowing for the quantification of traceable clusters.

Regional innovation and the critical role of higher education in this ecosystem have been the bedrock of the Council’s policy work ever since. Over the years, we have led extensive partnerships with the Departments of Commerce, Labor and Energy, as well as the National Governors Association. And much of our recent work, including two National Science Foundation supported grants – the Exploring Innovation Frontiers Initiative and the Building Industry-University-Laboratory Dialogue (BUILD) for Advanced Computing – and a multi-year Department of Energy partnership on advanced computing, has featured important regional innovation components, many times engaging the Council’s universities and colleges as key facilitators. Highlights of these efforts include:

- In recognition of the central role of innovation to economic and national security, the president of MIT hosted the Council’s first innovation summit in 1998 setting the stage a few years later for the Council’s groundbreaking National Innovation Initiative co-chaired by the president of Georgia Tech and the CEO of IBM.
This multi-year effort to define the scope of the opportunity in U.S. leadership as the world's innovator culminated in the release of *Innovate America* and spurred multiple national and international efforts to embrace innovation as the core driver of regional and national economic growth. Most notably, the bipartisan America COMPETES Act of 2008 traces its lineage directly to the Council’s report.

- *Innovate America* highlighted the central role of U.S. colleges and universities in spearheading multidisciplinary education, working on the edge of technological innovation and partnering with public and private sector stakeholders to maximize value from our investments in people and ideas.

- Following the 2006 *Innovate America* report, the Council partnered with the National Governors Association on a major regional innovation initiative that included a co-branded report, *Cluster-Based Strategies for Growing State Economies*.

- Further leveraging the insights of *Innovate America* and the support of the Department of Commerce’s Economic Development Administration and the Department of Labor, the Council developed a series of guides for academic, government and industry stakeholders to implement key strategies to develop regional assets. These included, *Regional Innovation, National Prosperity* and *Engage* (a guide to recruiting business leaders into regional growth strategies).

- Also, coming out of the Council’s earlier innovation work was a major partnership with the Department of Labor that linked federal workforce and economic development efforts for greater impact at the state/regional level. The Workforce Innovation for Regional Economic Development (WIRED) program was a first of its kind effort to maximize and coordinate the federal investment in these areas driven by bottom up, state-driven initiatives.

- More recently, the National Science Foundation supported two major Council initiatives to explore the changing nature of U.S. innovation capacity and new public-private partnerships to support advanced computing. The Exploring Innovation Frontiers Initiative put forth an agenda to capture the opportunity in the democratization and diversity across the innovation landscape. The Building Industry-University-Laboratory Dialogue (BUILD) for Advanced Computing is identifying new partnerships to leverage U.S. leadership at the forefront of supercomputing. Both efforts engaged the Council’s college and university members as conveners, subject matter experts and leaders in regional economic development.
• For over fifteen years and across three administrations, the Council has partnered with the Department of Energy and other government institutions to mobilize senior leaders across industry, academia, labor and the national labs to make the case for leveraging federal investments in advanced computing to create competitive advantage and opportunities for U.S. industry. Most recently, the Council brought regional leaders in New York, California, Ohio and Tennessee together with the broader S&T community around critical opportunities in advanced computing.

• The pinnacle of the Council’s work with the Department of Energy was the three-year American Energy and Manufacturing Competitiveness (AEMC) Partnership. The AEMC launched following the release of a major research report by the Council on public-private partnership models, The Power of Partnerships. Over the course of our work with DoE, the Council hosted nine regional dialogues and four national summits and obtained insights from industry, academia, national laboratories and government to drive U.S. competitiveness in new production models, energy efficiency and advanced manufacturing.

• Concurrent with the AEMC, the Council launched the privately funded Energy & Manufacturing Competitiveness Partnership (EMCP), a three-year effort to explore the economic opportunity at the nexus of energy and manufacturing in the United States. The EMCP engaged university, national lab and corporate members to host sector specific dialogues designed to call out cross-cutting policy issues affecting diverse interests, technologies and industries.

• And for a decade, the Council’s Technology Leadership and Strategy Initiative, comprising 50 CTOs, deputy national laboratory directors and heads of research from America’s universities and colleges, has helped define the competitiveness opportunity at the intersection of university-business-government partnerships that can pave the way for new products, businesses and high skilled jobs.

The Council’s college and university leaders have been central to our focus on national innovation capacity and the passage of the bipartisan America COMPETES Act in the early 2000s, through to current leadership on energy, manufacturing, enterprise resilience and technology policy. In short, they have helped set the agenda for U.S. competitiveness in Washington and across the country. And, in 2019, the Council will launch the National Commission on Innovation and Competitiveness Frontiers to confront and overcome critical challenges facing the U.S. innovation engine and to create momentum in the United States to pick up the pace of innovation.

The Commission will bring together a set of national leaders from industry, academia, the national labs and labor to put forth a national agenda to create momentum in the United States to outpace the rest of the world in innovation capacity, capability and competitiveness; to build on the Council’s history of work in defining, articulating and activating America’s innovation movement; and to develop new partnerships and
efforts to launch and scale innovation-based research, businesses and ventures.

Through the University Leadership Forum, the Council is ensuring colleges and universities will continue to play a vital and necessary role in setting the Council's policy agenda and supporting the long-term competitiveness of the United States. On behalf of the Council's Board and Executive Committee, we thank the members for their support and critical input to this new initiative.

Sincerely,

Michael M. Crow
President
Arizona State University, and
University Vice-chair
Council on Competitiveness

Deborah L. Wince-Smith
President & CEO
Council on Competitiveness
In order to meet the challenges of an interconnected, rapidly developing 21st century global innovation ecosystem, the college and university members of the Council on Competitiveness are proud to launch the University Leadership Forum.

Institutions of higher education from community colleges and liberal arts colleges to public and private undergraduate and graduate research universities play a pivotal role in competitiveness and economic growth. They are critical components of innovation ecosystems and serve as wellsprings of new knowledge and technology that function as the building blocks for new products, services, systems and processes. They develop the talent needed for discovery and investment and feed the pipeline of creative entrepreneurs who drive new business formation. It is not surprising then, that when looking at a global map of industry clusters and thriving startup zones, it is clear that the most innovative cities and regions in the nation are anchored by America’s academic institutions.

In this era of transformation, colleges and universities are embracing and re-imagining their pivotal roles in enabling economic development. They are responding to rapidly changing knowledge and skill demands and supporting communities of learners who are connected across cultures and geographies. They are making greater efforts than ever before to harness their unique capabilities to stimulate regional economic growth and to build multi-stakeholder partnerships to accelerate technology development and its commercialization at scale – a trend that is accelerating globally as well as nationally.

New learning models that move beyond the status quo and correspond with the transformational shifts in jobs and skills are imperative for competitiveness in the 21st century. The University Leadership Forum enables leaders from America’s top academic institutions to join forces with each other and with Council members from industry, labor and the national laboratories to understand the changing innovation landscape and to develop solutions to current and future challenges to U.S. competitiveness. While academia will lead this initiative, industry and other stakeholders, such as national laboratories, will play important roles to highlight and inform best practices on collaborative models and to explore new mutually beneficial relationships to drive inclusive innovation.
The University Leadership Forum is focused on understanding how colleges and universities contribute to the competitiveness of the United States, maximize the value these institutions add to the U.S. economy and enhance prosperity for all Americans.

For its initial work plan, the University Leadership Forum will address the challenges and opportunities in three broad areas:

- Extreme Innovation;
- University-Industry-Government Partnerships; and
- The Fusion of STEM & Liberal Arts Disciplines

The University Leadership Forum will formally launch at a meeting in Washington, DC on June 18, 2019. Members will have the opportunity to discuss and advance the three work streams and to set the agenda for moving forward. Subsequent task force meetings will take deeper dives into their respective issues and engage outside expertise from among the Council membership and other stakeholders, including policymakers at the federal and state levels.

As university and college leaders come together, discussions will focus on sharing best practices, developing new concepts and formulating policy recommendations across the three work-streams. The Forum is intended both as an internal think tank to the Council on the critical role of higher education in shaping U.S. competitiveness, and as an impact player in state and federal policymaking, building the work force of the future.

We thank the members of the University Leadership Forum for their support and contributions and look forward to working together to co-develop a robust national policy agenda for a more prosperous and productive nation.

Sincerely,

Michael R. Lovell
President
Marquette University

Jere W. Morehead
President
University of Georgia
Table of Contents

1. Initiative Overview

2. Extreme Innovation Task Force Charter

4. The Fusion of STEM & Liberal Arts Disciplines Task Force Charter

5. Works Cited

6. Notes

7. Foundational Council Reports

8. Relevant Council Initiatives

9. University Leadership Forum Members

10. About the Council on Competitiveness

11. Council on Competitiveness Members, Fellows and Staff
Initiative Overview

Colleges and universities are critical components of the U.S. innovation ecosystem and are being called upon to play ever-evolving roles in research, economic development, skills training and life-long learning. They are essential for building talent; achieving scientific breakthroughs; creating new technologies, products, companies and organizations; and contributing to the local and national economies. Budgetary constraints and rapid technological change are spurring the evolution of new business models targeted at challenges such as higher operating costs, student access and affordability. In short, colleges and universities are as susceptible to disruption as every other sector of the economy. How they manage portfolios of intellectual property, attract the best and brightest from around the globe while ensuring affordable access to U.S. students and navigate shrinking financial support from the public sector are key questions that will define higher education’s role in America’s future competitiveness.

Massive structural transformations underway in the United States, such as the ongoing digitization of the economy, including the way people work, shop and play; the impact of emerging technologies on societal norms and ethics; and diverse, ever changing expectations for the workforce of the future – are forcing colleges and universities to reevaluate their roles in this ecosystem. However, these challenges also provide exciting opportunities for innovation, and businesses, research entities, government and labor stand ready to work with higher education to explore and implement new models for success.

Understanding, anticipating and promoting change in the current models for higher education is imperative for competitiveness in the 21st century. The University Leadership Forum will enable leaders from America’s top academic institutions to work in concert with each other and as part of the broader Council membership, including CEOs, labor union leaders and the directors of national laboratories to: understand how innovation is changing; consider actions institutions might take; mobilize to lower or eliminate shared barriers; and identify potential innovation partners. While the focus will be on academia, industry and other stakeholders will participate and share best practices on cooperation to continue building relationships that foster innovation.

This initiative will bring together college and university leaders from a variety of institutions and backgrounds. Participants will set the innovation agenda for university leadership now and into the future through the lens of U.S. competitiveness.
The Forum will meet bi-annually and each task force will meet separately hosted by Forum members throughout the country. The groups will also convene regularly through scheduled teleconferences designed to advance the conversation and develop learnings and best practices. Council members from industry, labor and the national laboratories will be invited to participate on an ad hoc basis to contribute to the work of the Forum.

Throughout the work of the Forum, policymakers at the federal and state levels will also be engaged through direct participation and through outreach by Council members and staff. The work of the Forum will inform the Council’s overall policy agenda, including the newly launched National Commission on Innovation and Competitiveness Frontiers, as it seeks to leverage the critical role of higher education in America’s innovation ecosystem and its dual impacts upon shaping national prosperity and security.

TASK FORCES

The University Leadership Forum will initially concentrate its work agenda around three interconnected institutional challenges and opportunities that collectively will better optimize the pivotal role and measurable impact of America’s colleges and universities on U.S. competitiveness. The Forum will explore higher education’s role in the nation’s advanced research and development enterprise, in equipping the next generation of Americans with the skills and learning required to thrive and prosper in an ever-transforming global economy, and in supporting regional economic development and national economic growth through enhanced academic, industry and government collaboration and strategic partnerships.

Extreme Innovation

With digitization and the convergence of sectors ranging from manufacturing to biotechnology, extreme innovation projects drive discovery and human progress, result in new business models to meet social needs, mold the future of work and sow the seeds for economic growth and job creation. For example, last year a McKinsey Global Institute paper estimated that AI techniques could create between $3.5T and $5.8T in value annually across nine business functions in 19 industries.¹

America’s academic enterprise has played an essential role in the research, design and execution of extreme innovation projects. Colleges and universities across the country are leading in the development of cutting-edge technologies, spanning the spectrum from quantum computing to artificial intelligence to gene editing.

This is science at the edge often requiring long-term commitments and a global scope. Consider the recent publication of the first ever photograph of a black hole. Over five years of observation², researchers were able to gather vast amounts of data to assemble an image of a black hole using the Event Horizon Telescope (EHT). The EHT links telescopes across the globe using a radio signal, creating an earth-sized virtual telescope, allowing for higher resolution imaging.³ Over 200 scientists from countries such as France, the Netherlands and the United
States all worked together to sift through the vast amount of data before assembling the image. The process of compiling the image took months, as the equivalent of over 5,000 years of mp3 files was produced. From start to finish, the project lasted over 20 years, costing roughly $19.3 million.

Whether pushing the boundaries of what we can see at vast distances or at quantum scales, new technologies are disrupting industries, jobs and economies across the globe, as well as shaping how humans will progress and how society will advance. They are crucial drivers of productivity and economic growth, altering the patterns of society and many dimensions of everyday life. For academia, companies and countries, the ability to leverage these technologies for economic impact is fundamental to their competitiveness and economic success. In addition to their economic potential, these technologies could solve many of the world’s critical challenges surrounding areas such as healthcare, energy and sustainability, clean water and the global food supply.

In addition to the research component, universities and colleges are ground zero for educating and training the next generation workforce to take advantage of these disruptions. A Council-Deloitte report on "Exponential Technologies" highlighted that as companies transition to an agile, technology-powered culture in an era defined more and more by exponential possibilities, companies will increasingly turn to one of their most important assets—people—to achieve new levels of output and success. Individuals are quicker and more adept at adopting new innovations than businesses—and society—as a whole. The goal, therefore, when managing future talent-related opportunities and challenges is to encourage individuals to seek change rather than resist it. This is especially important as roles evolve from training on routine processes and tasks, to educating and retraining workers in new skill sets that focus on innovating and problem solving to unlock new forms of value in an ever-evolving ecosystem and economy.

These issues have been a key part of discussion for the Council’s Technology Leadership and Strategy Initiative (TLSI), which has served for the past decade as an internal technology policy think tank for the organization, as well as a public advocate for policies to leverage value from the cutting edge of technology. The TLSI’s work has included task forces on priorities, such as "Accelerating Innovation for American Competitiveness," that laid the groundwork for recommendations to policymakers that have borne fruit over the years such as permanently extending the R&D tax credit, expanding the network on manufacturing hubs across the country and building on the success of the federal technology transfer laws enacted during the 1980s.
What still remains to be determined is how exponential technologies and extreme innovation will impact higher education itself. The technologies being developed in America’s universities will carry the country into a new era of extreme innovation. While these fields are researched and developed by colleges and universities, higher education itself will inevitably be shaped by these technologies as they introduce unique challenges that must be addressed.

University-Industry-Government Partnerships

Industry relies on colleges and universities to invest in early-stage technology, provide proof of concept for new processes and products, contribute academic expertise and educate and train students to successfully enter the workforce. The research and development for many innovations would not be possible without partnerships between industry and academia, and support from government. Given the Council’s cross-sectoral membership representing industry, academia, national labs and labor, these partnerships are central to our mission and critical to the policy impact that the Council affects.

Beginning in 1980 with the passage of the Bayh-Dole Act, there was a tectonic shift in the U.S. approach to tech transfer and commercialization. Under this act, universities that receive federal funding, businesses, or non-profit organization, are able to pursue invention. By emphasizing patent management and patent licensing, the country began to see an increase in country-wide research and development. In 1986, Congress enacted the Federal Technology Transfer Act (FTTA) to improve access to federal laboratories by non-federal organizations. Shortly after, in 1987, President Ronald Reagan issued Executive Order 12591 to ensure that federal laboratories transfer their technology knowledge and assist in the research and development of public universities and the private sector. The order reiterated themes that are found in both the Bayh-Doyle Act and the FTTA.

Several years later in 2000, Congress signed the Technology Transfer Commercialization Act to further improve the ability of Federal agencies to license federally owned inventions. The act stresses the importance of collaboration between federal labs, universities and industry for future economic prosperity in the United States.

University research and the transfer of knowledge continues to drive the innovation economy in the United States. Since the Bayh-Dole Act was enacted, the U.S. has developed over 200 vaccines and drugs through public-private partnerships, granted 80,000 patents and disclosed 380,000 inventions.

Yet, even today, the United States is looking for ways to maximize the return on investment of the nation’s research enterprise. The Council is not alone in undertaking efforts around the issue of technology transfer. In 2016, in recognition of the evolving role of public universities in the innovation landscape, the Association of Public Land Grant Universities (APLU) convened a working group on technology transfer evolution.
This working group was tasked with: examining the evolution of technology transfer in detail; calling out examples of the ways in which technology transfer is changing; identifying challenges and obstacles to the ongoing evolution; and making recommendations to help universities continue the evolution. Many other organizations including the Association of American Universities (AAU), Association of University Technology Managers (AUTM), the Council on Governmental Relations (COGR), SSTI and the University Industry Demonstration Partnership (UIDP), are looking at this issue as well with an eye towards building upon a U.S. strength.13

In December 2018, the U.S. Department of Commerce's National Institute of Standards and Technology (NIST) released a draft green paper detailing steps to modernize the U.S. system of technology transfer and innovation for the 21st century. The intent of the report and the actions it described are to maximize returns on the taxpayer investment in R&D through enhanced partnerships, streamlined regulations and simplified intellectual property paradigms.14

These university-industry-government collaborations have taken on a greater urgency in recent years as federal and state support for research has stagnated. Programs and projects that bring together higher education and industry allow for mutually beneficial outcomes that support academic research, enhance industry capabilities and support local and regional economic development. Industry partners can also provide critical guidance on technological and economic trends including skill sets needed in the workforce, a critical indicator for new programs or degrees students can pursue. Yet, there are challenges to creating lasting, scalable partnerships between academia, industry and government that must be addressed.

The Fusion of STEM and Liberal Arts Disciplines

When engineers think like artists and artists think like engineers, new perspectives are created on the road to discovery. Through disciplines such as art, history, philosophy, ethics, language and music, scientists and engineers can push the boundaries of their disciplines often resulting in groundbreaking research. Large corporations are utilizing the liberal arts infusion to keep their employees thinking creatively and students must be prepared to apply both art and science skills to take maximum advantage of workforce opportunities.

The integration of arts with science, technology, engineering and math is not a new concept, but it has taken on new urgency as support for the arts has waned from K-12 to college. Small liberal arts colleges are closing, bachelor's degrees in the arts are declining and many colleges and universities are reducing their offerings in the arts.15 Yet, the
Council’s 2016 report Work stated that for workers to succeed at the leading edge of innovation... it requires not only technical excellence, but also the pursuit of the leading edge of design, marketing, social media and building value for a diversity of customers. This goes beyond the need for technical skills, to include critical thinking, creativity, imagination and the understanding of people, societies, and what they need and want. Add to this a growing realization that the "ethics" of technology is central to understanding and managing many of the disruptors on the horizon such as AI and automation.16

In 2017, the National Academy of Sciences, Engineering and Medicine conducted a study to examine the role of liberal arts in STEM education. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education, published in 2018, examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students.17 The study found that, among other things, many of the learning outcomes associated with the integration of the humanities and arts with STEM—critical thinking, communications skills, the ability to work well in teams, content mastery, improved visuospatial skills and improved motivation and enjoyment of learning, for example—align with those that employers say they are looking for in recent graduates. Increasing enrollment in interdisciplinary courses and majors also suggests that students are interested in integration.

At the same time, researchers found that despite enthusiasm for interdisciplinary approaches in teaching and research, numerous challenges tend to discourage interdisciplinary integration—even within related fields. Rigid professional identities, disciplinary structures, and organizational and bureaucratic arrangements are interlinked in ways that tend to disincentivize interdisciplinary integration. Multidisciplinary education comprising fields such as biomimicry, computer graphics and a host of dual degree programs is a clear differentiator for U.S. students that will allow them to compete globally. This shift includes the integration of STEM education and the arts through a concept called STEAM (Science, Technology, Engineering, Arts and Math, which promotes greater interaction across fields.18

Looked at through the lens of competitiveness, this integration is a critical advantage for U.S. students, workers and industry. Aware of U.S. leadership in this area, foreign students continue to flock to U.S. advanced degree programs in STEM fields, far out pacing U.S. citizens in these programs.19 While attracting the best and brightest from around the world continues to be a priority for national competitiveness, balancing that with the need to prepare U.S. citizens with the tools to compete and prosper is a challenge for the higher education community and policymakers alike.
Extreme Innovation
Task Force Charter

Co-chairs

Dr. James R. Johnsen
System President
University of Alaska

Dr. Laurie A. Leshin
President
Worcester Polytechnic Institute

Goal

Understand the role of universities in translating extreme innovation into economic value.

Initial Task Force Questions to Address

To meet the goal, the task force will address the following questions:

- What are the key aspects of extreme innovation with respect to development, funding and governance?
- How can universities better position themselves to initiate, participate in or lead such projects?
- What are some of the emerging opportunities for universities to take part in extreme innovation?
- What are some examples of university-led projects in this area that could be replicable models?
- Are expectations for extreme innovation at universities matching the current reality for these technologies?

Concept

The Council’s 2018 Clarion Call for Competitiveness stated:

"At the same time that competition in technology and innovation is rising around the world and U.S. technology leadership is under threat, we are witnessing the unfolding and accelerated advancement of the greatest revolutions in science and technology: a new phase of the digital revolution characterized by vast deployment of sensors, the Internet of Things, artificial intelligence and the big data tsunami; biotechnology and gene editing; nanotechnology; and autonomous systems. Each of these technologies has numerous applications that cut across industry sectors, society and human activities. Each is revolutionary, each is game-changing in its own right. But they are now colliding and converging on the global economy and society simultaneously, with profound
Key findings will be synthesized into a comprehensive report detailing best practices in leveraging extreme innovation to create economic value and will include recommendations for scaling the development and implementation of extreme innovation.

A broad outreach plan will follow the release of the report and will include press events, Hill briefings, town halls and other opportunities to showcase the work of members and advance the recommendations identified by the group.

EXTREME INNOVATION:
Worcester Polytechnic Institute

The Integrative Materials Design Center (iMdc) is a WPI-based research center dedicated to advancing the state-of-the-art-and-practice in sustainable materials-process-component design and manufacturing. Incorporating green processing procedures, students work with professors and professionals on researching and developing materials for a range of applications. The center brings together experts and provides research opportunities for students, creating interdisciplinary bridges between materials science, mechanical engineering, manufacturing and other related disciplines and establishing material-properties-performance correlations. The research also entails advanced design tools and strategies and road-maps for general use in all manufacturing industries and beyond.\(^{21}\)
Participation and Time Commitment

Leaders from America’s top academic institutions will be the main participants in all University Leadership Forum activities. They will guide the discussions and development of policy solutions.

Each member participating in the task force will be asked to designate a representative to participate in regularly scheduled virtual meetings, stand in for the member at meetings they are unable to attend and provide subject matter feedback on policy recommendations, white papers and other materials produced by the task force.

Council members from industry, labor and the national laboratories will also be invited to participate on an ad hoc basis and will contribute to the research and discussions.

Methodology

The task force will meet via regularly scheduled teleconferences to define the scope of its work, assign leaders to specific tasks and evaluate materials. Virtual meetings will be organized and managed by Council staff with the input and guidance of the task force leadership.

The June 18th in-person meeting for all members of the University Leadership Forum will formalize the task force goals, schedule and short-term deliverables and launch policy discussions aimed at tackling critical issues facing academia that relate to the task force’s mandate.

EXTREME INNOVATION:
Kansas State University

The Nanotechnology Innovation Center of Kansas State (NICKS), housed within the College of Veterinary Medicine, was founded to allow Kansas State University to take a leadership position in cutting-edge interdisciplinary research that would foster major advances in the broad field of nanotechnology. The Center builds upon the existing strengths of KSU faculty and encourages them to produce new applications for nanotechnology by building self-sustaining research and graduate training programs. NICKS actively engages faculty from the disciplines of physics, chemistry, agriculture, engineering, biology, computational medicine, veterinary medicine and other related sciences to globally impact the direction of nanoscience research by taking advantages of unique expertise available at KSU. In addition to strengthening KSU’s existing nanotechnology research programs, it is the first nanotechnology research center housed at a veterinary college with an agricultural and comparative medicine focus.
University-Industry-Government Partnerships Task Force Charter

Co-chairs

Dr. M. David Rudd
President
University of Memphis

Dr. Ruth V. Watkins
President
University of Utah

Goal

Identify replicable models and best practices in university-industry-government partnerships to maximize the value created by greater interaction between higher education and American industry.

Initial Task Force Questions to Address

To meet the goal, the task force will address the following questions:

- What are some examples of impactful university-industry-government partnerships that are replicable across geographies?

- What role do intellectual property agreements or equity arrangements play in either facilitating or inhibiting successful university–industry partnerships?

- What federal or state regulatory policies could be enacted to facilitate greater collaboration between industry and academia? What policies are roadblocks?

- How does reduced government support for research and increased private sector investment impact the nature of these partnerships?

Concept

The Council’s 2018 Clarion Call highlighted America’s research enterprise as its "ace-in-the-hole" versus mounting global competition.23

The United States is home to many of the world’s top research universities and a distinctive set of crown jewel national laboratories, while other nations are working to strengthen their university-based research and industry engagement with research institutions. The United States is known for strong technology transfer policies and intellectual property ownership of technologies developed with government funding. Other nations’ science, technology and innovation efforts are strongly guided by national strategic plans, and
many have high level ministries devoted to stimulating technology and innovation. Many countries have national research programs that target emerging technologies and fields. The strength of the start-up and entrepreneurial culture varies by country. In the United States, state and regional governments play a significant role, with a wide variety of programs designed to stimulate technology-based economic growth, such as accelerators, incubators for start-up firms and seed funds.

The research and development of many of the world’s game-changing technologies would not be possible without partnerships between industry, academia and government. Programs and projects that bring together these stakeholders allow for mutually beneficial outcomes that support academic research, enhance industry capabilities and support local and regional economic development. Industry relies on colleges and universities for investment in early-stage technology, proof of concept for new processes and products, academic expertise, and the education and training of students to successfully enter the workforce. At the same time, industry partners can provide critical guidance on technological and economic trends, including skill-sets needed for students to thrive in the workforce. The University-Industry-Government Partnerships task force will identify, analyze and decode new and emerging models for university-industry partnerships, showcase best practices and identify the key structures, capabilities and functions needed to replicate successful partnerships.

UNIVERSITY–INDUSTRY–GOVERNMENT PARTNERSHIPS: The University of Memphis

The University of Memphis formed a partnership with FedEx that brings research funding into the university across many departments while providing research and development for FedEx and training students for workforce development. The FedEx Institute of Technology is an advanced technology and research organization that functions as a catalyst for interdisciplinary research and innovation in emerging technologies by supporting cross-campus research innovation clusters. These clusters focus on areas such as intelligent systems, drones, cyber security testing, biologistics, autonomous vehicles, robotics, smart biomaterials, additive manufacturing and precision medicine. The Institute is also home to the university’s intellectual property and patent repository, a focal point of technology transfer and licensing operations.

Deliverables

The task force will convene regular teleconferences and an annual, in-person dialogue to advance the discussion on university-industry-government partnerships. Key findings and recommendations will be synthesized into a comprehensive report showcasing best practices and identifying policies that can help prepare workers to compete in the global marketplace, while ensuring American industry has the talent it needs to succeed. A broad outreach plan will follow the release of the report and will include press events, Hill briefings, town halls and other opportunities to showcase the work
of members and advance the recommendations identified by the group.

Participation and Time Commitment

Leaders from America’s top academic institutions will be the main participants in all University Leadership Forum activities. They will guide the discussions and development of policy solutions.

Each member participating in the task force will be asked to designate a representative to participate in regularly scheduled virtual meetings, stand in for the member at meetings they are unable to attend and provide subject matter feedback on policy recommendations, white papers and other materials produced by the task force. Council members from industry, labor and the national laboratories will be invited to participate on an ad hoc basis and will contribute to the research and discussions.

Methodology

The task force will meet via regularly scheduled teleconferences to define the scope of its work, assign leaders to specific tasks and evaluate materials. Virtual meetings will be organized and managed by Council staff with the input and guidance of the task force leadership.

The June 18th in-person meeting for all members of the University Leadership Forum will formalize the task force goals, schedule and short-term deliverables and launch policy discussions aimed at tackling critical issues facing academia that relate to the task force’s mandate.

The task force will convene for an annual, in-person dialogue hosted by one of the co-chairs in which external experts and potential partners will be brought in to contribute to the task force. Each year at the Council’s National Competitiveness Forum, key findings of the Forum will be presented by initiative and task force co-chairs.

UNIVERSITY–INDUSTRY–GOVERNMENT PARTNERSHIPS:
University of Utah

Utah has a strong entrepreneurial culture and an incentive system, making it attractive for research faculty and students alike. Its Technology and Venture Commercialization office is among the best in the nation in evaluating and minimizing risk, as well as aiding in the commercialization process. The Commercialization Engine Committee, a notable, unique asset, comprises of a network of external experts from a variety of fields who offer counsel and make the process highly efficient. From 2012 to 2015, Utah generated $211.8 million in licensing income or $135.8 thousand per million in research expenditure. The University of Utah has many different areas of focus for its research and commercialization efforts, but biomedical is a key priority, including the Center for Medical Innovation and Lassonde Entrepreneur Institute.25
The Fusion of STEM & Liberal Arts Disciplines Task Force Charter

Co-chairs

Dr. Adam S. Weinberg
President
Denison University

Mr. Jonathan R. Alger
President
James Madison University

Dr. Adam S. Weinberg
President
Denison University

Goal

Develop a comprehensive set of recommendations and policies to support the premise that competitive advantage is derived from the successful integration of STEM and the liberal arts.

Initial Task Force Questions to Address

To meet the goal, the task force will address the following questions:

• How can the intersection of STEM and the liberal arts in America’s academic system create a competitive advantage for U.S. students and workers vis-a-vis rising global competition? How does it advantage companies and institutions when people with these skills work together?

• How do we measure the success and long-term economic benefits of cross-disciplinary programs?

• What are examples of best practices in the integration of STEM and the liberal arts?

• What federal, state and institutional policies and practices can be put in place in the United States that further encourage the integration of STEM and the liberal arts?

• How must curricula change or adapt to facilitate and encourage the merger between art and science? What are the skills we need to teach?

• What role does/will ethics play in the development of cutting-edge technology such as AI and CRISPR?

Concept

Multidisciplinary education comprising fields such as biomimicry, computer graphics and a host of dual degree programs have become a difference-maker for U.S. students that will allow them to compete globally. This shift includes the integration of STEM education and the arts through a concept called STEAM (Science, Technology, Engineering, Arts and Math), which promotes greater interaction across fields.

The Fusion of STEM & Liberal Arts Disciplines task force will identify, analyze and decode new and emerging models for how colleges
and universities are bringing together the disciplines.

Liberal arts must provide critical insight, judgement and ethics to new exponential and disruptive technologies. Leading stakeholders, strategies and motivations in philanthropy, industry, government and research will also be identified.

Deliverables

The task force will convene regular teleconferences and an annual, in-person dialogue to advance the discussion on the integration of STEM and the liberal arts in America’s universities. Key findings and recommendations will be synthesized into a comprehensive report showcasing best practices and identifying policies that should be put into place that further enable U.S. students and workers to gain and maintain a competitive advantage in the global economy. A broad outreach plan will follow the release of the report and will include press events, Hill briefings, town halls and other opportunities to showcase the work of members and advance the recommendations identified by the group.

Participation and Time Commitment

Leaders from America’s top academic institutions will be the main participants in all University Leadership Forum activities. They will guide the discussions and development of policy solutions.

Each member participating in the task force will be asked to designate a representative to participate in regularly scheduled virtual meetings, stand in for the member at meetings they are unable to attend and provide subject matter feedback on policy recommendations, white papers and other materials produced by the task force.

Council members from industry, labor and the national laboratories will be invited to participate on an ad hoc basis and will contribute to the research and discussions.

The task force will meet via regularly scheduled virtual meetings and an annual meeting in-person. Council members from industry, labor and the national laboratories will be invited to participate on an ad hoc basis and will contribute to the research and discussions.
THE FUSION OF STEM & LIBERAL ARTS DISCIPLINES:
James Madison University

JMU X-Labs is a model of education specifically designed to teach innovation with intention. Its trans-disciplinary programming challenges students to take ownership of their education, pivot creatively, and tackle problems that resist easy solutions with confidence.

At a time when higher education is trying to keep pace with the rapidly changing needs in industry, it is increasingly important to provide students with skills that go beyond traditional expectations. With its trans-disciplinary courses, JMU X-Labs challenges students to investigate all aspects of a problem, collaborate with industry professionals and peers from different majors, iterate ideas and welcome meaningful failure to solve real problems. Courses are shared across departments and in collaboration with experts in various fields across the country.27

scheduled teleconferences to define the scope of its work, assign leaders to specific tasks and evaluate materials. Virtual meetings will be organized and managed by Council staff with the input and guidance of the task force leadership.

The June 18th in-person meeting for all members of the University Leadership Forum will formalize the task force goals, schedule and short-term deliverables and launch policy discussions aimed at tackling critical issues facing academia that relate to the task force’s mandate.

The task force will convene for an annual, in-person dialogue hosted by one of the co-chairs in which external experts and potential partners will be brought in to contribute to the task force. Each year at the Council's National Competitiveness Forum, key findings of the Forum will be presented by initiative and task force co-chairs.
“About.” Denison University, denison.edu/campus/entrepreneurship/about.

“About JMU X-Labs.” Jmuxlabs.org/about./

“About FedEx Institute of Technology.” The University of Memphis, memphis.edu/fedex/about.php.

“High Performance, Reliability, and Recyclability.” WPI, web.wpi.edu/academics/me/IMDC/.

Huergo, J., & Porter, G. “Commerce’s NIST Announces Actions to Stimulate Commercialization of Federally Funded R&D,” NIST 06 Dec. 2018

“Kansas State University.” Nanotechnology Innovation Center of Kansas State, nicks.ksu.edu/.

Skorton, D. and A. Bear, editors. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education: Branches from the Same Tree. The National Academies Press, 2018.

Notes

3. Event Horizon information found on official site.
4. NSF report on first captured image of a black hole.
5. Referenced in The Verge article on the first image of a black hole.
6. Chicago Tribune coverage of the first image of a black hole.
7. Referencing collaborative report “Exponential Technologies in Manufacturing.”
10. Records of Executives Orders found in National Archives.
12. Infographic created by AUTM.
14. December 2018 News Release from NIST.
15. See article from John Marcus in The Hechinger Report.
17. Reference National Academies Press publication from Skorton & Bear.
20. The Council on Competitiveness 2018 Clarion Call offers insight into these points.
21. See WPI “High Performance, Reliability, and Recyclibility.”
22. See Nanotechnology Innovation Center of Kansas State University.
23. Reference 2018 Clarion Call for details on these claims.
24. See University of Memphis resource “About FedEx Institute of Technology.”
25. References Ross DeVol et. al.,“Concept to Commercialization.”
26. See Denison University site for more information.
27. See JMU webpage on JMU X-Labs.
Foundational Council Reports

Exponential Technologies in Manufacturing, 2018.

Work: Thriving in a Turbulent, Technological and Transformed Global Economy, 2015.

Advanced Technology Initiative in partnership with Deloitte, 2015.

Ignite 2.0: Voices of American University Presidents and National Lab Directors on Manufacturing Competitiveness, 2011.

Regional Innovation, National Prosperity, 2006.

The New Challenge to America’s Prosperity: Findings from the Innovation Index, 1999.

Winning the Skills Race, 1998.

A Call to Action: Regional Summits on American Innovation, 1997.

Human Resources Competitiveness Profile, 1995.

Elevating the Skills of the American Workforce, 1993.

Reclaiming the American Dream, 1988.

Global Competition – The New Reality: Results of the President’s Commission on Industrial Competitiveness, 1986.
Relevant Council Initiatives

National Commission on Innovation and Competitiveness Frontiers, 2019-

Building University-Industry-Lab Dialogue for Advanced Computing (BUILD), 2018-2019

Energy and Manufacturing Competitiveness Partnership (EMCP), 2015-2018

Exploring Innovation Frontiers Initiative (EFI), 2015-2018

National Engineering Forum, 2012-2014

U.S. Manufacturing Competitiveness Initiative (USMCI), 2010-2011

Technology Leadership and Strategy Initiative (TLSI), 2009-

Advanced Computing Roundtable (formerly the High Performance Computing Advisory Committee), 2003-

Clusters of Innovation Project, 1998

Workplace Technology Task Force, 1996
University Leadership Forum Members

Forum Co-chairs

Dr. Michael R. Lovell
President
Marquette University

Mr. Jere W. Morehead
President
University of Georgia

Extreme Innovation Task Force Co-chairs

Dr. James R. Johnsen
System President
University of Alaska

Dr. Laurie A. Leshin
President
Worcester Polytechnic Institute

University Industry-Government Partnerships Co-chairs

Dr. M. David Rudd
President
University of Memphis

Dr. Ruth V. Watkins
President
University of Utah

The Fusion of STEM & Liberal Arts Disciplines Task Force Co-chairs

Mr. Jonathan R. Alger
President
James Madison University

Dr. Adam S. Weinberg
President
Denison University

Members

Dr. Eric J. Barron
President
The Pennsylvania State University

Dr. Mark P. Becker
President
Georgia State University

Dr. Richard C. Benson
President
University of Texas at Dallas

The Honorable
Rebecca M. Blank
Chancellor
University of Wisconsin-Madison

Dr. Robert A. Brown
President
Boston University

The Honorable
Sylvia Matthews Burwell
President
American University

Dr. Michael M. Crow
President
Arizona State University

The Honorable
Mitchell, E. Daniels, Jr.
President
Purdue University

Dr. John DeGioia
President
Georgetown University

Dr. Wayne A. I. Frederick
President
Howard University

Dr. Julio Frenk
President
University of Miami
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>University/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. E. Gordon Gee</td>
<td>President</td>
<td>West Virginia University</td>
</tr>
<tr>
<td>Dr. Amy Gutmann</td>
<td>President</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Dr. Farnam Jahanian</td>
<td>President</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td>Rev. John I. Jenkins</td>
<td>President</td>
<td>University of Notre Dame</td>
</tr>
<tr>
<td>Dr. Paul C. Johnson</td>
<td>President</td>
<td>Colorado School of Mines</td>
</tr>
<tr>
<td>Dr. Robert E. Johnson</td>
<td>Chancellor</td>
<td>University of Massachusetts, Dartmouth</td>
</tr>
<tr>
<td>Dr. Pradeep K. Khosla</td>
<td>Chancellor</td>
<td>University of California, San Diego</td>
</tr>
<tr>
<td>Dr. Timothy L. Killeen</td>
<td>President</td>
<td>University of Illinois System</td>
</tr>
<tr>
<td>Dr. Steven Leath</td>
<td>President</td>
<td>Auburn University</td>
</tr>
<tr>
<td>Dr. Gary S. May</td>
<td>Chancellor</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>Gen. Richard B. Myers</td>
<td>President</td>
<td>Kansas State University</td>
</tr>
<tr>
<td>Mr. Eloy Ortiz Oakley</td>
<td>Chancellor</td>
<td>California Community Colleges</td>
</tr>
<tr>
<td>Dr. Christina H. Paxson</td>
<td>President</td>
<td>Brown University</td>
</tr>
<tr>
<td>Dr. Rodney K. Rogers</td>
<td>President</td>
<td>Bowling Green State University</td>
</tr>
<tr>
<td>Dr. Clayton Rose</td>
<td>President</td>
<td>Bowdoin College</td>
</tr>
<tr>
<td>Dr. Mark S. Schlissel</td>
<td>President</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Dr. Joseph E. Steinmetz</td>
<td>Chancellor</td>
<td>University of Arkansas</td>
</tr>
<tr>
<td>Dr. Elisa Stephens</td>
<td>President</td>
<td>Academy of Arts University</td>
</tr>
<tr>
<td>Dr. Claire Sterk</td>
<td>President</td>
<td>Emory University</td>
</tr>
<tr>
<td>Dr. Elizabeth Stroble</td>
<td>President</td>
<td>Webster University</td>
</tr>
<tr>
<td>Dr. Kumble Subbaswamy</td>
<td>Chancellor</td>
<td>University of Massachusetts Amherst</td>
</tr>
<tr>
<td>Dr. Satish K. Tripathi</td>
<td>President</td>
<td>The University at Buffalo</td>
</tr>
<tr>
<td>Dr. Kim A. Wilcox</td>
<td>Chancellor</td>
<td>University of California, Riverside</td>
</tr>
<tr>
<td>Dr. W. Randolph Woodson</td>
<td>Chancellor</td>
<td>North Carolina State University</td>
</tr>
</tbody>
</table>
About the Council on Competitiveness

For more than three decades, the Council on Competitiveness (Council) has championed a competitiveness agenda for the United States to attract investment and talent, and spur the commercialization of new ideas.

While the players may have changed since its founding in 1986, the mission remains as vital as ever—to enhance U.S. productivity and raise the standard of living for all Americans.

The members of the Council — CEOs, university presidents, labor leaders and national lab directors — represent a powerful, nonpartisan voice that sets aside politics and seeks results. By providing real-world perspective to Washington policymakers, the Council’s private sector network makes an impact on decision-making across a broad spectrum of issues from the cutting-edge of science and technology, to the democratization of innovation, to the shift from energy weakness to strength that supports the growing renaissance in U.S. manufacturing.

The Council’s leadership group firmly believes that with the right policies, the strengths and potential of the U.S. economy far outweigh the current challenges the nation faces on the path to higher growth and greater opportunity for all Americans.
Council on Competitiveness
Members, Fellows and Staff

BOARD
Chairman
Dr. Mehmood Khan
Chief Executive Officer
Life Biosciences, Inc.

Industry Vice-chair
Mr. Brian T. Moynihan
Chairman and Chief Executive Officer
Bank of America

University Vice-chair
Dr. Michael M. Crow
President
Arizona State University

Labor Vice-chair
Mr. Lonnie Stephenson
International President
IBEW

Chairman Emeritus
Mr. Samuel R. Allen
Chairman and Chief Executive Officer
Deere & Company

President & CEO
The Honorable Deborah L. Wince-Smith
Council on Competitiveness

FOUNDER
Mr. John A. Young
Former Chief Executive Officer
The Hewlett Packard Company

EXECUTIVE COMMITTEE
Mr. Jim Balsiliee
Co-founder
Institute for New Economic Thinking

Mr. Thomas R. Baruch
Managing Director
Baruch Future Ventures

Dr. Gene D. Block
Chancellor
University of California, Los Angeles

Mr. William H. Bohnett
President
Whitecap Investments LLC

Dr. James P. Clements
President
Clemson University

Mr. Jim Clifton
Chairman and CEO
Gallup

Dr. John J. DeGioia
President
Georgetown University

Mr. George Fischer
Senior Vice President and President,
Enterprise
Verizon Business Group

Ms. Janet Foutty
Chair of the Board
Deloitte

Dr. William H. Goldstein
Director
Lawrence Livermore National Laboratory

Mr. James S. Hagedorn
Chairman and CEO
The Scotts Miracle-Gro Company

Dr. Sheryl Handler
President and CEO
Ab Initio

Mr. Charles O. Holliday, Jr.
Chairman
Royal Dutch Shell, plc

The Honorable Shirley Ann Jackson
President
Rensselaer Polytechnic Institute

Dr. Farnam Jahanian
President
Carnegie Mellon University

Dr. Pradeep K. Khosla
Chancellor
University of California, San Diego

Mr. James B. Miliken
Chancellor
University of Texas System

Gen. Richard B. Myers
President
Kansas State University

The Honorable Janet Napolitano
President
The University of California System—Regents

Mr. Nicholas T. Pinchuk
Chairman and CEO
Snap-on Incorporated

Professor Michael E. Porter
Bishop William Lawrence University Professor
Harvard Business School

Mr. Robert L. Reynolds
President and CEO
Putnam Investments

Dr. Mark S. Schlissel
President
University of Michigan

Mr. Steve Stevanovich
Chairman and Chief Executive Officer
SGS Global Holdings

Mr. Larry Weber
Chairman and Chief Executive Officer
Racepoint Global

Ms. Randi Weingarten
President
American Federation of Teachers, AFL-CIO

Dr. W. Randolph Woodson
Chancellor
North Carolina State University

Mr. Paul A. Yarossi
President
HNTB Holdings Ltd.

Dr. Robert J. Zimmer
President
The University of Chicago

GENERAL MEMBERS
Mr. Jonathan R. Alger
President
James Madison University

Dr. Joseph E. Aoun
President
Northeastern University

Dr. Aziz Asphahani
Chief Executive Officer
QuesTek Innovations LLC

Dr. Dennis Assanis
President
University of Delaware

Dr. Eric Barron
President
Pennsylvania State University

The Honorable Sandy K. Baruah
President and Chief Executive Officer
Detroit Regional Chamber
Dr. Mark P. Becker
President
Georgia State University

Dr. Richard Benson
President
University of Texas at Dallas

The Honorable Rebecca M. Blank
Chancellor
University of Wisconsin—Madison

Dr. Lee C. Bollinger
President
Columbia University

Dr. Robert A. Brown
President
Boston University

Mr. Al Bunshaft
Senior Vice President, Global Affairs
Dassault Systèmes Americas

The Honorable Sylvia M. Burwell
President
American University

Mr. Bill Cave
CEO
Predictsys

Mr. John Chachas
Managing Partner
Methuselah Advisors

Mr. John Chisholm
Chief Executive Officer
John Chisholm Ventures

The Honorable Mitchell E. Daniels, Jr.
President
Purdue University

Mr. Ernest J. Dianastasis
CEO
The Precisionists, Inc.

Dr. Michael V. Drake
President
The Ohio State University

Dr. Taylor Eighmy
President
The University of Texas at San Antonio

Mr. Robert Ford
Executive Vice President, Medical Devices
Abbott

Mr. Kenneth C. Frazier
Chairman and Chief Executive Officer
Merck & Co., Inc.

Dr. Wayne A. I. Frederick
President
Howard University

Dr. Julio Frenk
President
University of Miami

Dr. W. Kent Fuchs
President
University of Florida

The Honorable Patrick D. Gallagher
Chancellor
University of Pittsburgh

Dr. E. Gordon Gee
President
West Virginia University

Dr. Amy Gutmann
President
University of Pennsylvania

Ms. Marilynn A. Hewson
Chairman, President and CEO
Lockheed Martin

Mr. G. Michael Hoover
Chief Executive Officer
Sundt Construction

Rev. John I. Jenkins
President
University of Notre Dame

Dr. James R. Johnson
System President
University of Alaska

Dr. Paul Johnson
President
Colorado School of Mines

Dr. Robert E. Johnson
Chancellor
University of Massachusetts Dartmouth

The Honorable Alexander A. Karsner
Managing Partner
Emerson Collective

Dr. Timothy L. Killeen
President
University of Illinois System

Dr. Steve Leath
President
Auburn University

Dr. Laurie A. Leshin
President
Marquette University

Dr. Larry R. Marshall
Chief Executive
CSIRO

Dr. Gary S. May
Chancellor
University of California, Davis

Mr. Sean McFarvey
President
North America's Building Trades Unions

Dr. Jonathan McIntyre
Chief Executive Officer
Motif Ingredients

Brig. Gen. John Michel
Director, Executive Committee
Skyworks Global

Mr. Jere W. Morehead
President
University of Georgia

Mr. Eloy Ortiz Oakley
Chancellor
California Community Colleges

Dr. Christina Hull Paxson
President
Brown University

Dr. Neville Pinto
President
University of Cincinnati

Mr. John Pyrovolakis
Chief Executive Officer
Innovation Accelerator Foundation

Dr. Edward Ray
President
Oregon State University
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. L. Rafael Reif</td>
<td>President</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Mr. Rory Riggs</td>
<td>Managing Member</td>
<td>Balfour, LLC</td>
</tr>
<tr>
<td>Mr. John Rogers</td>
<td>President and CEO</td>
<td>Local Motors</td>
</tr>
<tr>
<td>Dr. Rodney Rogers</td>
<td>President</td>
<td>Bowling Green State University</td>
</tr>
<tr>
<td>Mr. Clayton Rose</td>
<td>President</td>
<td>Bowdoin College</td>
</tr>
<tr>
<td>Mr. Douglas Rothwell</td>
<td>President and Chief Executive Officer</td>
<td>Business Leaders for Michigan</td>
</tr>
<tr>
<td>Dr. David Rudd</td>
<td>President</td>
<td>University of Memphis</td>
</tr>
<tr>
<td>Vice Admiral John R. Ryan</td>
<td>President and Chief Executive Officer</td>
<td>Center for Creative Leadership</td>
</tr>
<tr>
<td>Dr. Cathy Sandeen</td>
<td>Chancellor</td>
<td>University of Alaska Anchorage</td>
</tr>
<tr>
<td>Dr. Timothy D. Sands</td>
<td>President</td>
<td>Virginia Polytechnic Institute and State University</td>
</tr>
<tr>
<td>Dr. Kirk Schulz</td>
<td>President</td>
<td>Washington State University</td>
</tr>
<tr>
<td>Mr. John Sharp</td>
<td>Chancellor</td>
<td>The Texas A&M University System</td>
</tr>
<tr>
<td>Mr. Edward Joseph Shoen</td>
<td>Chairman and Chief Executive Officer</td>
<td>U-Haul</td>
</tr>
<tr>
<td>Mr. Frederick W. Smith</td>
<td>Chairman and Chief Executive Officer</td>
<td>FedEx Corporation</td>
</tr>
<tr>
<td>Dr. Joseph E. Steinmetz</td>
<td>Chancellor</td>
<td>University of Arkansas</td>
</tr>
<tr>
<td>Dr. Elisa Stephens</td>
<td>President</td>
<td>Academy of Art University</td>
</tr>
<tr>
<td>Dr. Claire Sterk</td>
<td>President</td>
<td>Emory University</td>
</tr>
<tr>
<td>Dr. Elizabeth Stroble</td>
<td>President</td>
<td>Webster University</td>
</tr>
<tr>
<td>Dr. Kumle R. Subbaswamy</td>
<td>Chancellor</td>
<td>University of Massachusetts Amherst</td>
</tr>
<tr>
<td>Dr. Satish K. Tripathi</td>
<td>President</td>
<td>University at Buffalo</td>
</tr>
<tr>
<td>Dr. Satish Udpa</td>
<td>Interim President</td>
<td>Michigan State University</td>
</tr>
<tr>
<td>Dr. Martin Vanderploeg</td>
<td>Chief Executive Officer and President</td>
<td>Workiva</td>
</tr>
<tr>
<td>Dr. Ruth V. Watkins</td>
<td>President</td>
<td>University of Utah</td>
</tr>
<tr>
<td>Dr. Adam S. Weinberg</td>
<td>President</td>
<td>Denison University</td>
</tr>
<tr>
<td>Dr. Kim A. Wilcox</td>
<td>Chancellor</td>
<td>University of California, Riverside</td>
</tr>
<tr>
<td>Dr. Wendy Wintersteen</td>
<td>President</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>Dr. Steven F. Ashby</td>
<td>Director</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>Dr. Paul Keams</td>
<td>Director</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Dr. Martin Keller</td>
<td>Director</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td>Dr. Thomas Mason</td>
<td>Director</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>Dr. Mark Peters</td>
<td>Director</td>
<td>Idaho National Laboratory</td>
</tr>
<tr>
<td>Dr. Michael Witherell</td>
<td>Director</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>Dr. Thomas Zacharia</td>
<td>Director</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>CORPORATE PARTNERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrexon Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PepsiCo, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Oil Company</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SparkCognition, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThinkIQ.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY PARTNERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California, Irvine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATIONAL AFFILIATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean Bartles</td>
<td>President & CEO</td>
<td>National Tooling and Machining Association</td>
</tr>
<tr>
<td>Mr. Jeffrey Finkle</td>
<td>President</td>
<td>International Economic Development Council</td>
</tr>
<tr>
<td>Dr. Anthony Margida</td>
<td>Chief Executive Officer</td>
<td>TechGrit AMX2 LLC</td>
</tr>
<tr>
<td>Dr. David W. Oxtoby</td>
<td>President</td>
<td>American Academy of Arts and Sciences</td>
</tr>
<tr>
<td>Ms. Andrea Purple</td>
<td>President</td>
<td>ARCS Foundation Inc.</td>
</tr>
<tr>
<td>Mrs. Sandra Robinson</td>
<td>President</td>
<td>IEEE-USA</td>
</tr>
</tbody>
</table>
FELLOWS

Mr. Bray Barnes, Senior Fellow
Director, Global Security & Innovative Strategies

Ms. Jennifer S. Bond, Senior Fellow
Former Director, Science & Engineering Indicators Program, National Science Foundation

Dr. Thomas A. Campbell, Senior Fellow
Former National Intelligence Officer for Technology, Office of the Director of National Intelligence

Dr. C. Michael Cassidy, Senior Fellow
Director, Emory Biomedical Catalyst; Emory University

Ms. Donna L. Crawford, Senior Fellow
President, Livermore Lab Foundation; and Former Associate Director, Computation, Lawrence Livermore National Laboratory

The Honorable Bart J. Gordon, Distinguished Fellow
Partner, K&L Gates LLP; and Former United States Representative (TN)

Mr. Thomas Hicks, Distinguished Fellow
Principal, The Mabus Group; and Former Undersecretary of the Navy, U.S. Department of Defense

Dr. Lloyd A. Jacobs, Distinguished Fellow
President Emeritus, The University of Toledo

Dr. Paul J. Hommert, Distinguished Fellow
Former Director, Sandia National Laboratories; and Former President, Sandia Corporation

Dr. Ray O. Johnson, Distinguished Fellow
Executive in Residence, Bessemer Venture Partners; and Former Senior Vice President and Chief Technology Officer, Lockheed Martin

Mr. Dominik Knoll, Senior Fellow
Former Chief Executive Officer, World Trade Center of New Orleans

The Honorable Steven E. Koonin, Distinguished Fellow
Director, Center for Urban Science and Progress, and Professor, Information, Operations & Management Sciences, Leonard N. Stern School of Business, New York University; and Former Second Under Secretary of Energy for Science, U.S. Department of Energy

Mr. R. Brad Lane, Distinguished Fellow
Co-Founder & Chief Executive Officer RIDGE-LANE Limited

The Honorable Alan P. Larson, Distinguished Fellow
Senior International Policy Advisor, Covington & Burling LLP; and Former Under Secretary of State for Economics, U.S. Department of State

Mr. Alex R. Larzelle, Senior Fellow
President, Larzelle & Associates LLC; and Former Director, Modeling and Simulation Energy Innovation Hub, Office of Nuclear Energy, U.S. Department of Energy

Mr. Abbott Lipsky, Senior Fellow
Former Partner, Latham & Watkins LLP

Mr. Edward J. McElroy, Distinguished Fellow
Former Chief Executive Officer, Ullico, Inc.

The Honorable Julie Meier Wright, Senior Fellow
Former Chief Executive, San Diego Regional Economic Development Corporation; and Former First Secretary of Trade & Commerce, State of California

Mr. Mark Minevich, Senior Fellow
Principal Founder, Going Global Ventures

Ms. Michelle Moore, Senior Fellow
Chief Executive Officer, Groundswell; and Former Senior Advisor to the Director, Office of Management and Budget, Executive Office of the President of the United States

Dr. Luis M. Proenza, Distinguished Fellow
Principal Founder, Going Global Ventures

Ms. Jody Ruth, Senior Fellow
CEO, Redstones

Mr. Reuben Sarkar, Senior Fellow
Former Deputy Assistant Secretary for Transportation, U.S. Department of Energy

Mr. Allen Shapard, Senior Fellow
Former Chief Executive Officer, Alcoa, Inc.

Dr. Thomas M. Uhlman, Distinguished Fellow
Managing Partner, BrainOxygen, LLC.

Ms. Jennifer S. Bond, Senior Fellow
Adjunct Professor of Law, Georgetown University Executive Producer, BLOOD & TREASURE for CBS and AmazonPrime

Mr. William Bates, Executive Vice President
Executive Vice President

Mr. Chad Evans
Executive Vice President

Ms. Marcy Jones
Special Assistant to the President & CEO and Office Manager

Ms. Patricia Hennig
Vice President for Finance

Mr. Gourang Wakade
Vice President

Mr. Abbott Lipsky, Senior Fellow
Managing Director, Berkeley Research Group, LLC

Mr. Michael Bernstein
Senior Policy Director for Energy and Manufacturing Initiatives

Ms. Maria-Elena Tierno
Senior Policy Director for Energy and Manufacturing Initiatives

Mr. Michael Bernstein
Senior Policy Director for Energy and Manufacturing Initiatives

Ms. Ta Tanisha Scott-Baker
Director for Information Technology and Services

Mr. Joshua Oswalt
Policy Analyst
Asset mapping is an important first step in understanding the resources that a community can leverage to support integrated workforce and economic development initiatives. This guidebook is designed to help regional leaders understand the theory and practice of asset mapping, make a decision about what level of asset mapping is appropriate for their region, and provide an easy-to-use guide for implementation.

ISBN 1-889866-34-2

THE COUNCIL ON COMPETITIVENESS is a non-profit, 501(c) (3) organization as recognized by the U.S. Internal Revenue Service. The Council’s activities are funded by contributions from its members, foundations, and project contributions. To learn more about the Council on Competitiveness, visit our homepage at www.compete.org.

COPYRIGHT © 2007 Council on Competitiveness

DESIGN: Soulellis Studio
Printed in the United States of America